
Lecture 11

Lossy Compression Basics and Quantization

EE 274: Data Compression - Lecture 11 1

Announcements

EE 274: Data Compression - Lecture 11 2

Quiz Q1

Unmatched Literals Match Length Match Offset

AABBB 4 1

- 5 9

CDCD 2 2

1. What is the output string after decoding the first row? Ans: AABBBBBBB

2. What is the output string after decoding the second row? Ans: AABBB

3. What is the output string after decoding the third row? Ans: CDCDCD

EE 274: Data Compression - Lecture 11 3

Quiz Q2

Unmatched Literals Match Length Match Offset

TA 1 X1

W X2 3

- 2 2

X3 - -

1. What is match offset X1 ? Ans: 2

2. What is match length X2 ? Ans: 1

3. What are the unmatched literals X3 ? Ans: DI

EE 274: Data Compression - Lecture 11 4

Quiz Q3

Consider an English text. Also consider a reversibly transformed version where each byte is
replaced with itself plus one. So A becomes B, B becomes C and so on.

Zstd would perform similarly on both the original text and the transformed version.
() True

() False

A LLM-based compressor trained on English would perform similarly on both the
original text and the transformed version.

() True
() False

EE 274: Data Compression - Lecture 11 5

Quiz Q4

Your company produces a lot of data of a particular kind, and you are asked to find ways to

efficiently compress it to save on bandwidth and storage costs. Which of these is a good
approach to go about this?

() Use CMIX since your company deserves the best possible compression irrespective of
the compute costs.

() Use gzip because LZ77 is a universal algorithm and so it has to be the best compressor
for every occasion.

() Make a statistically accurate model of your data, design a predictor, and then use a
context-based arithmetic coder.

() Understand the application requirements, try existing compressors like zstd and then
evaluate whether there are benefits to create a domain specific compressor based on an

approximate model for the data.

EE 274: Data Compression - Lecture 11 6

Recap

So far learnt about lossless compression and tradeoffs for various entropy coders

Learnt about fundamental limits on lossless compression: H(p)

Thumb rule:

Learn about various lossless compressors aka entropy coders and their
implementations

Block codes: Shannon coding and Huffman coding

Streaming codes: Arithmetic coding and Asymmetric Numeral Systems

Universal (pattern) matching codes: LZ77

Learnt about how to deal with non-IID sources

Context-based coding

Adaptive coding

L(x) ∝ ⌈log ​(1/p(x))⌉2

EE 274: Data Compression - Lecture 11 7

Lossy Compression Basics

Second-half of the course will look into lossy compression

Lossless compression is a special case of lossy compression

Everything we learnt about lossless compression is applicable to lossy compression,
and in-fact, all lossy compressors deploy entropy coding as a final step

we will learn more about this in the coming lectures

Lossless compression assumed discrete sources but in practice we deal with
continuous sources - sensors, images, audio, video, etc.

Quiz-1: How much information does a continuous source X contain?

EE 274: Data Compression - Lecture 11 8

Lossy Compression Basics

Second-half of the course will look into lossy compression

Lossless compression is a special case of lossy compression

Everything we learnt about lossless compression is applicable to lossy compression,

and in-fact, all lossy compressors deploy entropy coding as a final step
we will learn more about this in the coming lectures

Lossless compression assumed discrete sources but in practice we deal with

continuous sources

Quiz-1: How much information does a continuous source X contain?

Ans: Infinite! Fact about real numbers: they are uncountable, i.e., there are infinite real
numbers between any two real numbers.

EE 274: Data Compression - Lecture 11 9

Lossy Compression Basics

So we cannot represent a continuous source exactly. We need to approximate it.

Approximation imply loss of information.

Distortion (D) is a measure of loss of information, e.g.

MSE: , MAE: , etc.

Also, this means we have a choice on how much information we want or are OK to lose.

Rate (R) is the number of bits used to represent the source

Higher rate, imply we should be to represent the source more accurately, i.e., lower

distortion

This is the fundamental rate-distortion tradeoff in lossy compression.

D = E[(X −)]X̂ 2 D = E[∣X − ∣]X̂

EE 274: Data Compression - Lecture 11 10

Rate-Distortion Tradeoff or RD curve

EE 274: Data Compression - Lecture 11 11

12

RD Example

Example 1

Let's say you are measuring temperature (T) in a room, say in Celsius, at an hourly
interval.

Remember, physical T is a continuous source.

Say your sensor is very sensitive and it records T = [38.110001, 36.150901,

37.122020, 37.110862, 35.827111]

Quiz-2: How many bits do we want to represent T ?

EE 274: Data Compression - Lecture 11 13

RD Example

Example 1

Let's say you are measuring temperature (T) in a room, say in Celsius, at an hourly
interval.

Remember, physical T is a continuous source.

Say your sensor is very sensitive and it records T = [38.110001, 36.150901,
37.122020, 37.110862, 35.827111]

Quiz-2: How many bits do we want to represent using T ?
Ans: Depends on the application! If we are using it to control the AC, we might need more

bits than if we are using it to decide whether to wear hoodie or T-shirt. In either case,

we need to decide on the distortion we are OK with

we can agree these many decimals are waste of bits
EE 274: Data Compression - Lecture 11 14

RD Example

Example 1

Let's say you are measuring temperature (T) in a room, say in Celsius, at an hourly
interval.

Remember, physical T is a continuous source.

Say your sensor is very sensitive and it records T = [38.110001, 36.150901,

37.122020, 37.110862, 35.827111]

Quiz-3: What are some reasonable values to encode?

EE 274: Data Compression - Lecture 11 15

RD Example

Example 1

Let's say you are measuring temperature (T) in a room, say in Celsius, at an hourly

interval.
Remember, physical T is a continuous source.

Say your sensor is very sensitive and it records T = [38.110001, 36.150901,
37.122020, 36.827111, 35.201022]

Quiz-3: What are the reasonable values to encode?
Ans: We can decide to round T to the nearest integer, i.e., T_lossy = [38, 36, 37,

37, 35] . This is similar to converting T to int from float .

EE 274: Data Compression - Lecture 11 16

Quantization

What we did in the previous example is called quantization.

Quantization is the process of mapping a continuous source to a discrete source.

Quantization is a lossy process, i.e., it introduces distortion.

Quantization is a fundamental operation in lossy compression!

Quantized values are also sometimes called symbols or codewords, and the set of

available quantized values is called codebook or dictionary.
In previous example, codebook is {35, 36, 37, 38} and codewords for each

symbol are {35, 36, 37, 37, 35} .

Quiz-4: For a codebook of size N , what is the rate R ?

EE 274: Data Compression - Lecture 11 17

Quantization

What we did in the previous example is called quantization (or binning).

Quantization is the process of mapping a continuous source to a discrete source.

Quantization is a lossy process, i.e., it introduces distortion.

Quantization is a fundamental operation in lossy compression!

Quantized values are also sometimes called symbols or codewords, and the set of
quantized values is called codebook or dictionary.

In previous example, codebook is {35, 36, 37, 38} and codewords for each
symbol are {35, 36, 37, 37, 35} .

Quiz-4: For a codebook of size N , what is the rate R ?
Ans: . Alternatively, we can say the quantized value for each symbol can

take unique values.

R = log ​(N)2
2R

EE 274: Data Compression - Lecture 11 18

Quantization Example - Gaussian

Example 2

Now say, X is a Gaussian source with mean 0 and variance 1, i.e.,

Say we want to represent X using just 1 bit per symbol.

Quiz-5: What are some reasonable values to encode?

X ∼ N (0, 1)

EE 274: Data Compression - Lecture 11 19

Quantization Example - Gaussian

Example 2

Now say, X is a Gaussian source with mean 0 and variance 1, i.e.,

Say we want to represent X using just 1 bit per symbol.

Quiz-5: What are some reasonable values to encode?

Ans: We can decide to convey just the sign of X, i.e., as the distribution is

symmetric around 0.

X ∼ N (0, 1)

=X̂ sign(X)

EE 274: Data Compression - Lecture 11 20

Quantization Example - Gaussian

Example 2

Now say, X is a Gaussian source with mean 0 and variance 1, i.e.,

Say we want to represent X using just 1 bit per symbol.

Encode using the sign of X, i.e.,

Say we get a positive value for , what should be the quantized value of the

recovered symbol?

Need to decide on the distortion we are OK with, say MSE distortion

Quiz-6: What should be the codebook?

X ∼ N (0, 1)

X̂ =X̂ sign(X)

X̂

EE 274: Data Compression - Lecture 11 21

Quantization Example - Gaussian

Example 2

Now say, X is a Gaussian source with mean 0 and variance 1, i.e.,

Say we want to represent X using just 1 bit per symbol.

Encode using the sign of X, i.e.,

Say we get a positive value for , what should be the quantized value of the

recovered symbol?
Need to decide on the distortion we are OK with, say MSE distortion

Quiz-6: What should be the codebook?

Ans: Codebook .

For gaussian, this is .

X ∼ N (0, 1)

X̂ =X̂ sign(X)

X̂

C = E[(X∣ > 0)], E[(X∣ < 0)]{ X̂ X̂ }
C = ​, − ​{ ​

π
2

​

π
2 }

EE 274: Data Compression - Lecture 11 22

Quantization Example - Gaussian

EE 274: Data Compression - Lecture 11 23

Scalar Quantization

This is an example of scalar
quantization.

We are quantizing each symbol
independently. But can we do

better?

EE 274: Data Compression - Lecture 11 24

Vector Quantization

Maybe we can work with two (or more) symbols at a time?

Say we have , where

you can also think of it as you generated 2*N samples from and then

split them into two groups of size N (similar to block codes in lossless
compression)

or you can think of it as you have two sensors measuring the same source

or you can think of it as having two sensors measuring two different sources

Quiz-7: I want to compare it with 1 bit/symbol scalar quantization. What's the size of

codebook allowed?

X = [X ​,X ​]1 2 X ​,X ​ ∼1 2 N (0, 1)
N (0, 1)

EE 274: Data Compression - Lecture 11 25

Vector Quantization

Maybe we can work with two (or more) symbols at a time?

Say we have , where

you can also think of it as you generated 2*N samples from and then

split them into two groups of size N (similar to block codes in lossless
compression)

or you can think of it as you have two sensors measuring the same source

or you can think of it as having two sensors measuring two different sources

Quiz-7: I want to compare it with 1 bit/symbol scalar quantization. What's the size of

codebook allowed?
Ans: . Generalizing, we can have codebook of size

 for vectors (blocks) of size and bits/symbol.

X = [X ​,X ​]1 2 X ​,X ​ ∼1 2 N (0, 1)
N (0, 1)

2 =1 bit/symbol × 2 symbol/code-vector 4
N = 2R∗k k R

EE 274: Data Compression - Lecture 11 26

Vector Quantization

We can have codebook of size for vectors (blocks) of size and

bits/symbol. In other words, bits/symbol.

N = 2R∗K k R

R = (log ​ N)/k2

EE 274: Data Compression - Lecture 11 27

Vector Quantization (formally)

A quantizer is a mapping where is the "codebook" or

"dictionary" comprising of -dimensional vectors.

The mapping is defined by: where is a partition of

The rate is

Let's map this to the examples we looked at.

Q : R →k C C = ​ ​ ​{y
i
}
i=1

N

N k

Q(​) =x ​ ​ if ​ ∈y
i

x S ​i S ​{ i}i=1
N Rk

​ S ​ =⋃i=1
N

i R ; S ​ ∩k
l S ​ =m ϕ, l = m.

R = ​ ​ ;N =
k

logN
 sample

 bits 2kR

EE 274: Data Compression - Lecture 11 28

Vector Quantization

Benefits:

We can exploit dependence between vector components

We can have more general decision regions (than could be obtained via Scalar
Quantization)

EE 274: Data Compression - Lecture 11 29

Vector Quantization Example

EE 274: Data Compression - Lecture 11 30

Vector Quantization

Some comments (without proofs):

Optimal regions are generally not uniform (as in scalar quantization) even in simple

uniform IID case!

In the 2D case of uniform IID, a hexagonal lattice provides most optimal regions with
respect to MSE distortion.

This is called lattice quantization or Voronoi diagram and can accommodate
more than 2 dimensions.

 for 2D case.​ ≈
MSE ​SQ

MSE ​lattice 0.962

EE 274: Data Compression - Lecture 11 31

Vector Quantization

Vector quantization can be a lot of hard work with little gain. Be careful of the tradeoff

between complexity and gain.

Abstract from: On universal quantization, Ziv

EE 274: Data Compression - Lecture 11 32

https://ieeexplore.ieee.org/document/1057034

Vector Quantization -- Practical Considerations

In general, optimal regions are not easy to compute, and we need to resort to iterative
algorithms.

Quiz-8: Have you seen this problem before in some other context?

EE 274: Data Compression - Lecture 11 33

K-means Algorithm

It's same as K-means clustering algorithm in ML! Also called as Lloyd-Max algorithm

or Generalized Lloyd algorithm.
You want to cluster data points into N clusters corresponding to codebook (k in

k-means) such that the average distortion is minimized.

Historical Note:
First proposed by Stuart Lloyd in 1957 (motivated by audio compression) at Bell

Labs

Was widely circulated but formally published only in 1982

Independently developed and published by Joel Max in 1960, therefore

sometimes referred to as the Lloyd-Max algorithm

Generalized Lloyd specialized to squared error is the Kmeans clustering algorithm

widely used in Machine Learning
EE 274: Data Compression - Lecture 11 34

K-means Algorithm

Given some data points, we can compute the optimal codebook and the
corresponding partition of the data points.

Main idea is to do each-step iteratively:
Given a codebook, compute the best partition of the data points

Given a partition of the data points, compute the optimal codebook

Repeat until convergence

EE 274: Data Compression - Lecture 11 35

K-means Algorithm

def k_means(data, k, max_iterations=100):
 centroids = initialize_centroids(data, k) # some random initialization for centroids (codebook)
 for iteration in range(max_iterations): # some convergence criteria
 # Assign data points to the nearest centroid -- this is the partition step
 clusters = assign_data_to_centroids(data, centroids)
 # Calculate new centroids -- this is the codebook update step
 new_centroids = calculate_new_centroids(data, clusters)
 if np.allclose(centroids, new_centroids): # some convergence criteria
 break
 centroids = new_centroids # update centroids
 return clusters, centroids

Note: k is the size of the codebook (referred to as N in the rest of lecture) and data is

the set of data points.

EE 274: Data Compression - Lecture 11 36

K-means Algorithm

def k_means(data, k, max_iterations=100):
 centroids = initialize_centroids(data, k) # some random initialization for centroids (codebook)
 for iteration in range(max_iterations): # some convergence criteria
 # Assign data points to the nearest centroid -- this is the partition step
 clusters = assign_data_to_centroids(data, centroids)
 # Calculate new centroids -- this is the codebook update step
 new_centroids = calculate_new_centroids(data, clusters)
 if np.allclose(centroids, new_centroids): # some convergence criteria
 break
 centroids = new_centroids # update centroids
 return clusters, centroids

def initialize_centroids(data, k):
 # Randomly select k data points as initial centroids
 return data[np.random.choice(len(data), k, replace=False)]

def assign_data_to_centroids(data, centroids):
 # Assign each data point to the nearest centroid
 distances = np.linalg.norm(data[:, np.newaxis] - centroids, axis=2)
 clusters = np.argmin(distances, axis=1)
 return clusters

def calculate_new_centroids(data, clusters):
 # Calculate new centroids as the mean of data points in each cluster
 new_centroids = np.array([data[clusters == i].mean(axis=0) for i in range(len(np.unique(clusters)))])
 return new_centroids

EE 274: Data Compression - Lecture 11 37

Example Notebook

https://colab.research.google.com/drive/16dYjBEc499HgHoZRxcyeg0YmNAb5AwAW?

usp=sharing

EE 274: Data Compression - Lecture 11 38

https://colab.research.google.com/drive/16dYjBEc499HgHoZRxcyeg0YmNAb5AwAW?usp=sharing
https://colab.research.google.com/drive/16dYjBEc499HgHoZRxcyeg0YmNAb5AwAW?usp=sharing

More resources

We only scratched the surface of quantization. Many more advanced topics:

Constrained vector quantization

Predictive vector quantization

Trellis coded quantization

Generalized Lloyd algorithm

...

For more details, see:

Fundamentals of Quantization: Gray

Vector Quantization and Signal Compression: Gersho, Gray

EE 274: Data Compression - Lecture 11 39

https://ee.stanford.edu/~gray/shortcourse.pdf
https://link.springer.com/book/10.1007/978-1-4615-3626-0

Next time

We will look into the question of what is the fundamental limit on lossy compression, i.e.

what is the best possible rate-distortion tradeoff.

EE 274: Data Compression - Lecture 11 40

